Những “Bí Ẩn” Trong Toán Phổ Thông: Đạo Hàm Là Gì ? Ý Nghĩa Của Đạo Hàm

Một hôm, có một em học sinh chặn tôi lại và bất chợt hỏi: “Thưa Thầy, rốt cuộc thì đạo hàm là gì ạ?” Tôi cảm thấy hơi lúng túng bèn trả lời em học sinh đó một cách vô thưởng vô phạt: “À, trong tiếng hán thì Đạo có nghĩa là con đường, thế nên đạo hàm là khái niệm ám chỉ con đường vận động và biến đổi của hàm số…“. Về nhà nghĩ lại thì thấy trả lời kiểu đó cũng như không trả lời, vậy nên tôi quyết định viết bài này.

Đang xem: đạo hàm là gì

Nếu phải tóm tắt lại lịch sử phát triển hơn 200 năm của đạo hàm chỉ trong một câu thì tôi sẽ trích dẫn lời của tác giả Grabiner: “Đạo hàm đầu tiên được sử dụng như công cụ, sau đó mới được phát minh, tiếp nữa là được mở rộng và phát triển, cuối cùng mới được định nghĩa.” Thế nghĩa là thế nào? Nghĩa là trước khi được phát minh ra, người ta đã biết cách sử dụng nó như một công cụ đầy hiệu quả. Để hiểu đầu cua tai nheo thì chúng ta phải quay trở về những năm 1630 để tìm hiểu một phương pháp tìm cực trị mới mẻ mà Fermat đã nghĩ ra: Ông xét bài toán sau: Cho trước một đoạn thẳng, hãy chia nó thành 2 phần sao cho tích của 2 phần này là lớn nhất

*

Đáp án của bài toán này thì người ta đã biết từ trước (tích lớn nhất khi ta chia đoạn thẳng thành 2 phần bằng nhau) nhưng cách làm của Fermat thì lại rất mới. Gọi chiều dài đoạn ban đầu là B, chiều dài đoạn thứ nhất là A thì chiều dài đoạn thứ hai sẽ là:B-A và tích của 2 phần là:Bây giờ chúng ta hãy giả vờ khờ khạo không biết điểm N cần tìm ở đâu, lúc này hãy giả sử chúng ta tìm được một điểm M nào đó nằm bên phải thõa mãn yêu cầu đề bài (tức là làm cho đoạn AM nhỏ nhất). Khi đó nói chung luôn có một điểm M’ nằm bên trái để cho AM = AM’ cho nên nếu M là nghiệm của bài toán này thì M’ cũng phải là nghiệm và bài toán sẽ luôn có 2 nghiệm. Nguyên lý Pappus phát biểu rằng, giá trị cực tiểu sẽ đạt được trong trường hợp chỉ có một nghiệm, mà muốn vậy thì

Chắc các bạn cũng biết là để viết phương trình một đường thẳng chúng ta cần xác định được hệ số góc của nó. Kiến thức lớp 7 nói rằng hệ số góc của đường thẳng là tan của góc tạo bởi đường thẳng đó với trục hoành Ox. Chẳng hạn, đối với đường thẳng PQ ở trên thì hệ số góc của nó sẽ là:

*

Bây giờ chẳng hạn ta muốn xác định tiếp tuyến của đường cong tại điểm P. Làm thế nào để đường thẳng PQ biến thành tiếp tuyến đây, các nhà toán học đã nghĩ ra một phương án thú vị: Họ cho điểm Q tiến dần về điểm P, lúc đó thì rõ ràng đường thẳng PQ từ chỗ cắt đường cong tại 2 điểm P, Q nay sẽ chỉ còn cắt tại một điểm P và thế là “trở thành” tiếp tuyến còn gì :). Mọi người có đồng ý là khi

READ:  Wattpad Là Gì ? Link Tải Wattpad Soft Cho Điện Thoại Miễn Phí?
*

đồng nghĩa với việc

*

không nào. Như vậy bằng cách cho

*

trong công thức tính hệ số góc của đường PQ ở trên chúng ta sẽ thu được hệ số góc của tiếp tuyến cần tìm. Ngặt nỗi, thời điểm đó người ta chưa phát minh ra lý thuyết về giới hạn (sau này đó là công lao của Cauchy). Và thế là mọi người bèn bắt chước theo cách mà Fermat đã làm: đầu tiên họ cứ xem h là khác 0 rồi tìm cách rút gọn nó đi ở tử và mẫu, sau đó rồi thì xem h bằng 0 rồi triệt tiêu nó đi… Cách giải quyết kì lạ này lại thu được những thành công đến không ngờ, người ta đã giải quyết được bài toán xác định tiếp tuyến “khó nhằn” trước đó. Thế nhưng rất nhiều người khác gào lên bất mãn, thế là thế quái nào, sao lúc đầu xem h là khác 0 (để thoải mái rút gọn) rồi sau đó lại cho nó bằng 0, vậy rút cuộc nó là cái loại gì? Những người phát minh ra phương pháp này gọi h là “vô cùng bé”, có người còn đặt cho nó một cái tên khá là ma quái: “bóng ma của những đại lượng đã mất”.

Xem thêm: Đây Là Cách Stream Video Trực Tiếp Trên Facebook Điện Thoại, Trim A Previously Live Video

Câu hỏi này đã ám ảnh giới toán học rất lâu, mãi cho tới sau này khi Cauchy xây dựng hoàn chỉnh lý thuyết giới hạn thì bức màn bí ẩn mới được vén lên rõ ràng. Để tìm hệ số góc của tiếp tuyến: việc chúng ta cần làm là cho h tiến dần về 0 (tiến dần về nghĩa là càng ngày càng gần 0 nhưng không bao giờ bằng 0 nhé) và quan sát xem tỉ số

*

đang tiến dần về giá trị nào. Cái giá trị mà tỉ số này đang “tiến về” chính là thứ chúng ta muốn tìm. Tất nhiên là để tìm giới hạn này cần những kĩ thuật phù hợp, và cách làm của Fermat ở một chừng mực nào đó có thể xem là “xài được”.

Xem thêm: Cổng Usb Là Gì ? Cấu Tạo Của Usb Và Thông Số Kỹ Thuật Cổng Giao Tiếp Usb Là Gì

Newton và Leibniz được lịch sử công nhận là độc lập với nhau phát minh ra giải tích và khái niệm đạo hàm nói riêng. Leibniz xuất phát từ việc giải quyết bài toán tiếp tuyến đã đưa ra khái niệm “vi phân” và xây dựng đạo hàm theo khái niệm này (thật tiếc vì thời lượng bài viết không cho phép tôi nói chi tiết thêm về cách xây dựng của Leibniz). Trong khi đó Newton phát minh ra đạo hàm trong một hoàn cảnh rất đặc thù: ông phát minh ra giải tích chỉ như sáng tạo ra công cụ thích hợp để phục vụ cho các tính toán trong một lý thuyết vĩ đại mà sau này đã đặt nền móng cho cơ học cổ điển: Thuyết vạn vật hấp dẫn.Đạo hàm được Newton phát minh ra giúp ông giải quyết được bài toán xác định vận tốc, gia tốc chất điểm. Và ở đây ông đã cho đạo hàm một ý nghĩa tổng quát và mang trong mình một sức mạnh to lớn không thể tưởng tượng: Đạo hàm cho chúng ta biết được tốc độ biến thiên (tốc độ thay đổi) của một hàm số. Các bạn có biết được điều này quan trọng thế nào không? Với đạo hàm, bất cứ ở đâu có sự thay đổi, ở đó chúng ta sẽ biết được nó thay đổi như thế nào: liệu đại lượng đó đang tăng hay đang giảm hay đang không thay đổi, nếu là đang tăng vậy tăng nhanh hay tăng chậm…

READ:  Đầu Số 0123 Chuyển Thành Đầu Số Nào? Đầu Số 0123 Đổi Thành Gì

Vận tốc đặc trưng cho sự thay đổi của quãng đường đi được, gia tốc là đặc trưng cho sự thay đổi của vận tốc theo thời gian vậy thì có gì là khó hiểu không khi trong chương trình vật lí người ta nói với các bạn rằng: vận tốc là đạo hàm của hàm quãng đường theo thời gian, còn gia tốc là đạo hàm của hàm vận tốc.

Nhiều bạn chắc còn muốn hỏi thêm vì sao đạo hàm là có được ý nghĩa thú vị này? Thật ra thì không khó hiểu lắm đâu: Chẳng hạn với một hàm số bất kì

*

: Khi có sự thay đổi xảy ra, cụ thể là:

*

tăng lên một lượng h tức là trở thành

*

. Và hàm số sẽ thay đổi tương ứng từ

*

thành

*

. Tức là hàm số y đã thay đổi một lượng là

*

tương ứng với khi biến x tăng một lượng là h. Như vậy tốc độ thay đổi của y theo x sẽ là tỉ số quen thuộc:

*

. Tất nhiên tỉ số này chỉ mới cho ta biết tốc độ thay đổi trung bình của hàm số khi biến x tăng từ

*

mà thôi. Việc cho h tiến dần tới 0 sẽ giúp ta xác định được tốc độ biến thiên tức thời ngay tại thời điểm

*

. Và đó cũng chính là đạo hàm!Thật là nhân văn phải không các bạn, mỗi khi gặp những trắc trở khó khăn biến động lớn lao trong cuộc đời làm chúng ta mất đi niềm tin vào cuộc sống. Nhiều người đã tìm được nguồn an ủi, hi vọng và sự tin tưởng vào “đạo”, vào những đức tin chúng ta tín ngưỡng (riêng bản thân tôi rất có cảm tình với đạo phật). Cũng như vậy, mỗi khi nhà toán học phải đối diện với các hàm số đa dạng và phức tạp. Lo sợ trước sự biến thiên, thay đổi khó lường của chúng… họ tìm được niềm tin vững chắc bởi vì “đạo hàm” chưa bao giờ làm họ thất vọng.

Để kết thúc câu chuyện tôi sẽ kể cho các bạn nghe về sự thật đằng sau việc công bố công trình vĩ đại của Newton: Newton có một thói quen kì lạ, ông không thích công bố những công trình phát minh của mình mặc dù ông biết rõ sự lớn lao của nó. Một hôm nhà thiên văn học Edmund Halley đến thăm Newton (lúc bấy giờ là viện sĩ nổi tiếng của viện hàn lâm khoa học hoàng gia Anh) để khoe với ông về một công trình tâm đắc của mình. Cụ thể là sau một thời gian miệt mài quan sát thiên văn Halley đã phát hiện ra được một sao chổi rất đặc biệt và thậm chí còn dự đoán được chu kì quỹ đạo của nó, ông tính được rằng 75 năm sau nó sẽ xuất hiện thêm lần nữa. Trái với sự chờ mong của Halley, Newton không thốt lên những lời trầm trồ khen ngợi, thay vào đó ông tạt cho Halley một gáo nước lạnh ngắt: Newton nói mấy cái phát hiện linh tinh này ông đã tìm ra từ mấy năm trước. Harley vô cùng căm phẫn, cho rằng Newton muốn nuốt trôi công trình của mình nên ông quyết định sẽ “ăn thua đủ” nếu Newton không giải thích rõ ràng chuyện này.Hết cách Newton đành phải tiết lộ cho Halley biết những phát minh của mình đã giúp ông tính toán được rất nhiều các quỹ đạo của những thiên thể khác nhau. Halley đòi xem chúng, Newton dẫn ông ta đến một thùng đựng đầy giấy lộn nhưng đã không tìm thấy mấy tờ giấy có ghi lại tính toán về quỹ đạo sao chổi Halley. (Có lẽ mấy tờ giấy đó đã cuốn theo những dòng nước vội vã sau một cơn đau bụng bất ngờ của Newton chăng?) Newton đành phải giải thích rõ ràng, nào là ông ta đã phát minh ra vạn vật tương tác hút nhau như thế nào, rồi thì phát minh ra giải tích giúp ông ta tính toán quỹ đạo ra sao. Biết lực tương tác sẽ xác định được gia tốc (định luật 2 newton), có gia tốc thì làm phép toán ngược với đạo hàm (nguyên hàm – tích phân) sẽ giúp ông tìm được vận tốc. Có vận tốc lại tìm được hàm quãng đường từ đó mà biết quỹ đạo… Quá kinh ngạc với phát minh vĩ đại này nên Halley đã tìm mọi biện pháp từ dụ dỗ tới cứng rắn buộc Newton phải công bố. Newton đã dành 2 năm để viết là công trình này và xuất bản trong cuốn sách nổi tiếng: “Những nguyên lý toán học của triết học tự nhiên” (cái tên thấy không liên quan gì). Nghe đồn rằng Newton cố tình viết thật khó hiểu đến nổi không có tới 10 người thời điểm đó đọc hiểu được cuốn sách trên.

READ:  Thế Nào Là Lãnh Địa Phong Kiến Là Gì ? Thế Nào Là Lãnh Địa Phong Kiến

Việc công bố công trình của mình một cách trể nãi đã khiến giới khoa học rơi vào một cuộc tranh luận đáng tiếc. Về thực chất, Newton phát minh ra đạo hàm trước nhưng ông lại công bố sau Leibniz. Mặc dù hai nhà toán học này độc lập với nhau xây dựng nên cơ sở của giải tích, tuy nhiên những người bạn của họ lại cho rằng người này ăn cắp ý tưởng của người kia và thế là có một cuộc cãi vã đầy xấu hổ trong lịch sử toán học…

Hình như bài viết đã quá dài rồi phải không? Tôi không chắc có nhiều độc giả đủ kiên nhẫn đọc đến khi tôi viết những dòng cuối cùng này. Dù sao nếu quả thật có ai đó như vậy, tôi thành thật gửi lời cảm ơn vì các bạn đã dành nhiều thời gian cho những chia sẻ của tôi. Chúc mọi người học toán thật thú vị và vui vẻ

Xem thêm bài viết thuộc chuyên mục: tin tổng hợp